LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Moose calf detection probabilities: quantification and evaluation of a ground-based survey technique

Photo from wikipedia

Survey data improve population management, yet those data often have associated bias. We quantified one source of bias in moose survey data (observer detection probability, p), by using repeated ground-observations… Click to show full abstract

Survey data improve population management, yet those data often have associated bias. We quantified one source of bias in moose survey data (observer detection probability, p), by using repeated ground-observations of calves-at-heel of radio-collared moose in Colorado, USA. Detection probabilities, which varied both spatially and temporally, were estimated using an occupancy-modelling framework. We provide an efficient offset for modelled calf-at-heel occupancy (ψ) estimates that accommodates summer calf mortality. Detection probabilities were most efficiently modelled with seasonal variation, with the lowest probability of detecting calves-at-heel occurring during parturition (i.e. May) and later autumn periods (after August). Our most efficiently modelled detection probability estimate for summer was 0.80 (SE = 0.05). During the four years of this study, ψ estimates ranged from 0.54–0.84 (SE = 0.08–0.11). Accounting for 91.7% monthly calf survival corrected ψ estimates downward (ψ = 0.42–0.65). Our results suggest that repeated ground-based observations of individual cow moose, during summer months, can be can a cost-effective strategy for estimating a productivity parameter for moose. Ground survey results can be further improved by accounting for calf mortality.

Keywords: detection; ground based; survey; detection probabilities; calf

Journal Title: Wildlife Biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.