LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Upgraded Asynchronous Motors with a Squirrel Cage Rotor

Photo from wikipedia

The article presents the results of scientific research on solving the problem of reducing the starting currents of induction motors with a squirrel-cage rotor. Theoretical and technical aspects of the… Click to show full abstract

The article presents the results of scientific research on solving the problem of reducing the starting currents of induction motors with a squirrel-cage rotor. Theoretical and technical aspects of the solution are discussed. The possibilities of solving the problem on sets of parametrically homogeneous cells and parametrically inhomogeneous cells are analyzed. The use of a parametrically inhomogeneous cell allows for the start-up period to generate additional spectra of the harmonics of the current and cell fields, thus replenishing the field of differential scattering of the rotor. Inductive resistance corresponding to additional scattering is designed to limit the starting current and practically disappear in operating conditions. Analysis of the question shows that the possibilities of a homogeneous cell in this respect are very limited and are represented only by one basic spectrum of harmonics. The results of simulation of currents in a cell with different distribution of inhomogeneous elements are presented. The results of simulation of current displacement in the region of inhomogeneity are also presented. The resulted results testify that the problem of decrease in a starting current of asynchronous electric motors is solved theoretically and technically.

Keywords: rotor; cage rotor; squirrel cage; harmonics; motors squirrel

Journal Title: Russian Electrical Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.