LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Programmed cell death in cerebellar Purkinje neurons.

Photo by matmacq from unsplash

Apoptosis, autophagy and necrosis are the three main types of programmed cell death. One or more of these types of programmed cell death may take place in neurons leading to… Click to show full abstract

Apoptosis, autophagy and necrosis are the three main types of programmed cell death. One or more of these types of programmed cell death may take place in neurons leading to their death in various neurodegenerative disorders in humans. Purkinje neurons (PNs) are among the most highly vulnerable population of neurons to cell death in response to intrinsic hereditary diseases or extrinsic toxic, hypoxic, ischemic, and traumatic injury. In this review, we will describe the three main types of programmed cell death, including the molecular mechanisms and the sequence of events in each of them, and thus illustrating the intracellular proteins that mediate and regulate each of these types. Then, we will discuss the role of Ca2+ in PN function and increased vulnerability to cell death. Additionally, PN death will be described in animal models, namely lurcher mutant mouse and shaker mutant rat, in order to illustrate the potential therapeutic implications of programmed cell death in PNs by reviewing the previous studies that were carried out to interfere with the programmed cell death in an attempt to rescue PNs from death.

Keywords: cell death; types programmed; death; programmed cell; purkinje neurons

Journal Title: Journal of integrative neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.