LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fuzzy multicriteria decision-making-based optimal Zn–Al alloy selection in corrosive environment

Photo from wikipedia

Abstract Suitable material selection with emphasis on a specific property or application is an indispensable part of engineering sciences. It is a complex process that involves multiple criteria and often… Click to show full abstract

Abstract Suitable material selection with emphasis on a specific property or application is an indispensable part of engineering sciences. It is a complex process that involves multiple criteria and often multiple decision makers. The tendency of decision makers to specify their preference in terms of imprecise qualitative statements like ‘good’, ‘bad’ etc. poses a further challenge. Thus, in this research, a comprehensive multicriteria decision-making study was conducted to select the optimal Zn-Al alloy based on performance in a corrosive environment. Four variants of technique for order of preference by similarity to the ideal solution were used to perform the multicriteria decision-making analysis. Group decision and imprecise decision making is handled by incorporating the fuzzy theory concept in a technique for order of preference by similarity to the ideal solution. The effect of addition of aluminium to zinc was studied by examination of microstructure, hardness, and corrosion behaviour. The result indicates that an increase in Al content increases the formation of dendrites. The dendrites were rich in the α phase, which results in an increase in hardness. An increase in Al content in Zn (Zn-22Al and Zn-55Al) results in the uniform distribution of the a phase in the microstructure and reduction of non-equilibrium phases. The potentiodynamic polarisation test revealed that an increase in Al in the alloy decreases the corrosion current density. The weight loss test carried out to validate the potentiodynamic test findings exhibited higher weight loss in pure Zn and lowest in Zn-55Al. Similar results were observed in the salt spray test. The multicriteria decision-making analysis revealed that Zn-55Al is the most suitable alloy in a corrosive environment among the tested alloys.

Keywords: decision; alloy; multicriteria decision; decision making; corrosive environment

Journal Title: International Journal of Materials Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.