LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels

Photo by artistseyes from unsplash

We provide existence, uniqueness and stability results for affine stochastic Volterra equations with $L^1$-kernels and jumps. Such equations arise as scaling limits of branching processes in population genetics and self-exciting… Click to show full abstract

We provide existence, uniqueness and stability results for affine stochastic Volterra equations with $L^1$-kernels and jumps. Such equations arise as scaling limits of branching processes in population genetics and self-exciting Hawkes processes in mathematical finance. The strategy we adopt for the existence part is based on approximations using stochastic Volterra equations with $L^2$-kernels combined with a general stability result. Most importantly, we establish weak uniqueness using a duality argument on the Fourier--Laplace transform via a deterministic Riccati--Volterra integral equation. We illustrate the applicability of our results on Hawkes processes and a class of hyper-rough Volterra Heston models with a Hurst index $H \in (-1/2,1/2]$.

Keywords: equations kernels; volterra; volterra equations; existence uniqueness; stochastic volterra

Journal Title: Bernoulli
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.