LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhibition of lincRNA-Cox2 alleviates apoptosis and inflammatory injury of lipopolysaccharide-stimulated human bronchial epithelial cells via the Nrf2/HO-1 axis

Photo by john_cameron from unsplash

This study mainly explored the role and mechanism of lincRNA-Cox2 in inflammatory injury of human bronchial epithelial cells. BEAS-2B cells were stimulated with lipopolysaccharide to establish an in vitro inflammatory… Click to show full abstract

This study mainly explored the role and mechanism of lincRNA-Cox2 in inflammatory injury of human bronchial epithelial cells. BEAS-2B cells were stimulated with lipopolysaccharide to establish an in vitro inflammatory injury model. Real-time polymerase chain reaction was used to detect lincRNA-Cox2 expression in LPS-stimulated BEAS-2B. Cell viability and apoptosis of cells were assessed using CCK-8 and Annexin V-PI double staining. The contents of inflammatory factors were determined by enzyme-linked immunosorbent assay kits. The protein levels of nuclear factor erythrocyte 2-related factor 2 and haem oxygenase 1 protein levels were measured by Western blot. The results showed that lincRNA-Cox2 was upregulated in LPS-stimulated BEAS-2B cells. lincRNA-Cox2 knockdown inhibited apoptosis and the release of tumour necrosis factor alpha, interleukin 1beta (IL-1β), IL-4, IL-5, and IL-13 in BEAS-2B cells. lincRNA-Cox2 overexpression had the opposite effect. lincRNA-Cox2 knockdown also inhibited LPS-induced oxidative damage in BEAS-2B cells. Further mechanistic studies showed that inhibition of lincRNA-Cox2 upregulated the levels of Nrf2 and HO-1, and si-Nrf2 reversed the effects of si-lincRNA-Cox2. In conclusion, lincRNA-Cox2 knockdown inhibited BEAS-2B apoptosis and the level of inflammatory factors by activating the Nrf2/HO-1 pathway.

Keywords: inflammatory injury; lincrna cox2; human bronchial; cox2

Journal Title: Journal of Clinical Biochemistry and Nutrition
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.