Genetic evaluations for resistance to bovine tuberculosis (bTB) were calculated based on British national data including individual animal tuberculin skin test results, postmortem examination (presence of bTB lesions and bacteriological… Click to show full abstract
Genetic evaluations for resistance to bovine tuberculosis (bTB) were calculated based on British national data including individual animal tuberculin skin test results, postmortem examination (presence of bTB lesions and bacteriological culture for Mycobacterium bovis), animal movement and location information, production history, and pedigree records. Holstein cows with identified sires in herds with bTB breakdowns (new herd incidents) occurring between the years 2000 and 2014 were considered. In the first instance, cows with a positive reaction to the skin test and a positive postmortem examination were defined as infected. Values of 0 and 1 were assigned to healthy and infected animal records, respectively. Data were analyzed with mixed models. Linear and logit function heritability estimates were 0.092 and 0.172, respectively. In subsequent analyses, breakdowns were split into 2-mo intervals to better model time of exposure and infection in the contemporary group. Intervals with at least one infected individual were retained and multiple intervals within the same breakdown were included. Healthy animal records were assigned values of 0, and infected records a value of 1 in the interval of infection and values reflecting a diminishing probability of infection in the preceding intervals. Heritability and repeatability estimates were 0.115 and 0.699, respectively. Reliabilities and across time stability of the genetic evaluation were improved with the interval model. Subsequently, 2 more definitions of "infected" were analyzed with the interval model: (1) all positive skin test reactors regardless of postmortem examination, and (2) all positive skin test reactors plus nonreactors with positive postmortem examination. Estimated heritability was 0.085 and 0.089, respectively; corresponding repeatability estimates were 0.701 and 0.697. Genetic evaluation reliabilities and across time stability did not change. Correlations of genetic evaluations for bTB with other traits in the current breeding goal were mostly not different from zero. Correlation with the UK Profitable Lifetime Index was moderate, significant, and favorable. Results demonstrated the feasibility of a national genetic evaluation for bTB resistance. Selection for enhanced resistance will have a positive effect on profitability and no antagonistic effects on current breeding goal traits. Official genetic evaluations are now based on the interval model and the last bTB trait definition.
               
Click one of the above tabs to view related content.