LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of supplementing yeast culture to diets differing in starch content on performance and feeding behavior of dairy cows.

Photo from wikipedia

The objectives were to evaluate the effects of a culture of Saccharomyces cerevisiae (YC) on lactation performance of cows fed diets differing in starch content. Fifty-six Holstein cows at 42… Click to show full abstract

The objectives were to evaluate the effects of a culture of Saccharomyces cerevisiae (YC) on lactation performance of cows fed diets differing in starch content. Fifty-six Holstein cows at 42 d postpartum were blocked by parity and milk production and randomly assigned to 1 of 4 treatments, low starch (23% diet DM) and no YC (LS-control), low starch and 15 g/d of YC (LS-YC), high starch (29% diet DM) and no YC (HS-control), and high starch and 15 g/d of YC (HS-YC). The experiment lasted 14 wk. Blood was sampled twice weekly during the first 5 wk in the experiment. Feeding behavior was evaluated in 2 consecutive days when cows were 33 d in the experiment. On d 92 in the experiment, cows were challenged with 3 kg of corn grain DM immediately before the morning feeding. Blood was sampled in the first 12 h after the challenge. Rumen fluid was collected 5 h after the challenge, and pH, ammonia N, short-chain fatty acids, and lactate concentrations were quantified. Lactation performance was measured daily before and after the challenge. Supplementation with YC increased yields of 3.5% fat-corrected milk and energy-corrected milk by 2.2 and 2.0 kg/d, and the increments were observed in both low- and high-starch diets. Feeding HS tended to decrease milk fat content (LS = 3.88 vs. HS = 3.73%), but increased concentration (LS = 2.87 vs. HS = 3.00%) and yield (LS = 1.11 vs. HS = 1.20 kg/d) of milk true protein. Feeding YC increased yields of fat and true protein in milk by 100 and 60 g/d. Energy balance, body weight, and feed efficiency did not differ with treatments. Feeding HS reduced eating time (LS = 177 vs. HS = 159 min/12 h) and intermeal interval (LS = 103 vs. HS = 82 min), but tended to increase eating rate (LS = 139 vs. HS = 150 g/min). Interactions were detected between level of starch and YC for ruminating time, meal duration, and meal size because within LS, feeding YC increased ruminating time 23 min/12 h, but reduced meal duration 6 min/meal and meal size 0.7 kg/meal. Concentrations of glucose in plasma increased (LS = 62.1 vs. HS = 63.8 mg/dL), whereas those of urea N decreased (LS = 10.1 vs. HS = 9.4 mg/dL) with feeding HS compared with LS in the first 5 wk in the experiment, and the same responses were observed after the challenge with corn grain. After the challenge, rumen pH was less and short-chain fatty acid concentrations were greater in cows fed HS compared with those fed LS; however, supplementing YC to high-starch diets increased rumen pH (HS-control = 5.72 vs. HS-YC = 6.12) and reduced concentrations of lactate in rumen fluid (HS-control = 7.72 vs. HS-YC = 1.33 mM) and haptoglobin in plasma 28%. Feeding YC improved lactation performance irrespective of the level of dietary starch and reduced the risk of subacute rumen acidosis induced by a grain challenge when cows were fed a high-starch ration.

Keywords: milk; challenge; content; high starch; performance; starch

Journal Title: Journal of dairy science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.