LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fatty acid elongase 5 (ELOVL5) alters the synthesis of long-chain unsaturated fatty acids in goat mammary epithelial cells.

Photo by kowalikus from unsplash

Increased production of long-chain unsaturated fatty acids (LCUFA) can have a positive effect on the nutritional value of ruminant milk for human consumption. In nonruminant species, fatty acid elongase 5… Click to show full abstract

Increased production of long-chain unsaturated fatty acids (LCUFA) can have a positive effect on the nutritional value of ruminant milk for human consumption. In nonruminant species, fatty acid elongase 5 (ELOVL5) is a key enzyme for endogenous synthesis of long-chain unsaturated fatty acids. However, whether ELOVL5 protein plays a role (if any) in ruminant mammary tissue remains unclear. In the present study, we assessed the mRNA abundance of ELOVL5 at 3 stages of lactation in goat mammary tissue. Results revealed that ELOVL5 had the lowest expression at peak lactation compared with the nonlactating and late-lactating periods. The ELOVL5 was overexpressed or knocked down to assess its role in goat mammary epithelial cells. Results revealed that ELOVL5 overexpression increased the expression of perilipin2 (PLIN2) and decreased diacylglycerolacyltransferase 2 (DGAT2) and fatty acid desaturase 2 (FADS2) mRNA, but had no effect on the expression of DGAT1, FADS1, and stearoyl-CoA desaturase 1 (SCD1). Overexpression of ELOVL5 decreased the concentration of C16:1n-7, whereas no significant change in C18:1n-7 and C18:1n-9 was observed. Knockdown of ELOVL5 decreased the expression of PLIN2 but had no effect on DGAT1, DGAT2, FADS1, FADS2, and SCD1 mRNA expression. Knockdown of ELOVL5 increased the concentration of C16:1n-7 and decreased that of C18:1n-7. The alterations of expression of genes related to lipid metabolism after overexpression or knockdown of ELOVL5 suggested a negative feedback regulation by the products of ELOVL5 activation. However, the content of triacylglycerol was not altered by knockdown or overexpression of ELOVL5 in goat mammary epithelial cells, which might have been due to the insufficient availability of substrate in vitro. Collectively, these are the first in vitro results highlighting an important role of ELOVL5 in the elongation of 16-carbon to 18-carbon unsaturated fatty acids in ruminant mammary cells.

Keywords: goat mammary; elovl5; fatty acids; long chain; unsaturated fatty; chain unsaturated

Journal Title: Journal of dairy science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.