LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The behavior of cathepsin D during milk processing and its contribution to bitterness in a model fresh cheese.

Photo from wikipedia

The bovine endopeptidase cathepsin D was investigated regarding its temperature-dependent inactivation and ability to form bitter peptides within a spiked model fresh cheese. Cathepsin D was found to be more… Click to show full abstract

The bovine endopeptidase cathepsin D was investigated regarding its temperature-dependent inactivation and ability to form bitter peptides within a spiked model fresh cheese. Cathepsin D was found to be more susceptible than other milk endogenous peptidases to temperature treatments in skim milk. Inactivation kinetics revealed decimal reduction times of 5.6 min to 10 s in a temperature range from 60 to 80°C. High temperature and ultra-high temperature (UHT) treatments from 90 to 140°C completely inactivated cathepsin D within 5 s. A residual cathepsin D activity of around 20% was detected under pasteurization conditions (72°C for 20 s). Therefore, investigations were done to estimate the effect of residual cathepsin D activity on taste in a model fresh cheese. The UHT-treated skim milk was spiked with cathepsin D and acidified with glucono-δ-lactone to produce a model fresh cheese. A trained bitter-sensitive panel was not able to distinguish cathepsin D-spiked model fresh cheeses from the control model fresh cheeses in a triangle test. Model fresh cheese samples were also analyzed for known bitter peptides derived from casein fractions using a HPLC-tandem mass spectrometry (MS) approach. In accordance with the sensory evaluation, the MS analyses revealed that the bitter peptides investigated within the cathepsin D-spiked model fresh cheese were not found or were below the limit of detection. Even though cathepsin D may be present during the fermentation of pasteurized milk, it does not seem to be responsible for bitter peptide formation from milk proteins on its own.

Keywords: cathepsin; model fresh; temperature; milk; fresh cheese

Journal Title: Journal of dairy science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.