LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and validation of a machine learning algorithm for predicting diffuse midline glioma, H3 K27-altered, H3 K27 wild-type high-grade glioma, and primary CNS lymphoma of the brain midline in adults.

Photo from wikipedia

OBJECTIVE Preoperative diagnosis of diffuse midline glioma, H3 K27-altered (DMG-A) and midline high-grade glioma without H3 K27 alteration (DMG-W), as well as midline primary CNS lymphoma (PCNSL) in adults, is… Click to show full abstract

OBJECTIVE Preoperative diagnosis of diffuse midline glioma, H3 K27-altered (DMG-A) and midline high-grade glioma without H3 K27 alteration (DMG-W), as well as midline primary CNS lymphoma (PCNSL) in adults, is challenging but crucial. The aim of this study was to develop a model for predicting these three entities using machine learning (ML) algorithms. METHODS Thirty-three patients with DMG-A, 35 with DMG-W, and 35 with midline PCNSL were retrospectively enrolled in the study. Radiomics features were extracted from contrast-enhanced T1-weighted MR images. Two radiologists evaluated the conventional MRI features of the tumors, such as shape. Patient age, tumor volume, and conventional MRI features were considered clinical features. The data set was randomly stratified into 70% training and 30% testing cohorts. Predictive models based on the clinical features, radiomics features, and integration of clinical and radiomics features were established through ML. The performances of the models were evaluated by calculating the area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity. Subsequently, 10 patients with DMG-A, 10 with DMG-W, and 12 with PCNSL were enrolled from another institution to validate the established models. RESULTS The predictive models based on clinical features, radiomics features, and the integration of clinical and radiomics features through the support vector machine algorithm had the optimal accuracies in the training, testing, and validation cohorts, and the accuracies in the testing cohort were 0.871, 0.892, and 0.903, respectively. Age, 2 radiomics features, and 3 conventional MRI features were the 6 most significant features in the established integrated model. CONCLUSIONS The integrated prediction model established by ML provides high discriminatory accuracy for predicting DMG-A, DMG-W, and midline PCNSL in adults.

Keywords: diffuse midline; machine; midline; midline glioma; radiomics features; glioma

Journal Title: Journal of neurosurgery
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.