LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Artificial Intelligence–Based 3D Angiography for Visualization of Complex Cerebrovascular Pathologies

Photo from wikipedia

BACKGROUND AND PURPOSE: By means of artificial intelligence, 3D angiography is a novel postprocessing method for 3D imaging of cerebral vessels. Because 3D angiography does not require a mask run… Click to show full abstract

BACKGROUND AND PURPOSE: By means of artificial intelligence, 3D angiography is a novel postprocessing method for 3D imaging of cerebral vessels. Because 3D angiography does not require a mask run like the current standard 3D-DSA, it potentially offers a considerable reduction of the patient radiation dose. Our aim was an assessment of the diagnostic value of 3D angiography for visualization of cerebrovascular pathologies. MATERIALS AND METHODS: 3D-DSA data sets of cerebral aneurysms (nCA = 10), AVMs (nAVM = 10), and dural arteriovenous fistulas (dAVFs) (ndAVF = 10) were reconstructed using both conventional and prototype software. Corresponding reconstructions have been analyzed by 2 neuroradiologists in a consensus reading in terms of image quality, injection vessel diameters (vessel diameter [VD] 1/2), vessel geometry index (VGI = VD1/VD2), and specific qualitative/quantitative parameters of AVMs (eg, location, nidus size, feeder, associated aneurysms, drainage, Spetzler-Martin score), dAVFs (eg, fistulous point, main feeder, diameter of the main feeder, drainage), and cerebral aneurysms (location, neck, size). RESULTS: In total, 60 volumes have been successfully reconstructed with equivalent image quality. The specific qualitative/quantitative assessment of 3D angiography revealed nearly complete accordance with 3D-DSA in AVMs (eg, mean nidus size3D angiography/3D-DSA= 19.9 [SD, 10.9]/20.2 [SD, 11.2] mm; r = 0.9, P = .001), dAVFs (eg, mean diameter of the main feeder3D angiography/3D-DSA= 2.04 [SD, 0.65]/2.05 [SD, 0.63] mm; r = 0.9, P = .001), and cerebral aneurysms (eg, mean size3D angiography/3D-DSA= 5.17 [SD, 3.4]/5.12 [SD, 3.3] mm; r = 0.9, P = .001). Assessment of the geometry of the injection vessel in 3D angiography data sets did not differ significantly from that of 3D-DSA (vessel geometry indexAVM: r = 0.84, P = .003; vessel geometry indexdAVF: r = 0.82, P = .003; vessel geometry indexCA: r = 0.84, P <.001). CONCLUSIONS: In this study, the artificial intelligence–based 3D angiography was a reliable method for visualization of complex cerebrovascular pathologies and showed results comparable with those of 3D-DSA. Thus, 3D angiography is a promising postprocessing method that provides a significant reduction of the patient radiation dose

Keywords: cerebrovascular pathologies; angiography; artificial intelligence; geometry; vessel

Journal Title: American Journal of Neuroradiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.