LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Associating IDH and TERT Mutations in Glioma with Diffusion Anisotropy in Normal-Appearing White Matter

Photo from wikipedia

BACKGROUND AND PURPOSE: IDH and TERT mutations might infiltratively manifest within normal-appearing white matter with specific phenotypes such as microstructural changes undetectable by standard MR imaging contrasts but potentially associable… Click to show full abstract

BACKGROUND AND PURPOSE: IDH and TERT mutations might infiltratively manifest within normal-appearing white matter with specific phenotypes such as microstructural changes undetectable by standard MR imaging contrasts but potentially associable with DTI variables. The aim of this retrospective glioma study was to statistically investigate IDH and TERT associations and classifications with DTI reported microstructure in normal-appearing white matter. MATERIALS AND METHODS: Retrospective data from patients imaged between March 2012 and February 2016 were analyzed by grouping them as IDH–TERT subgroups and by IDH and TERT mutation status. DTI variables in the IDH-TERT subgroups were first identified by the Kruskal-Wallis test, followed by Dunn-Šidák multiple comparisons with Bonferroni correction. IDH and TERT mutations were compared with the Mann-Whitney U test. Classification by thresholding was tested using receiver operating characteristic analysis. RESULTS: Of 170 patients, 70 patients (mean age, 43.73 [SD, 15.32] years; 40 men) were included. Whole-brain normal-appearing white matter fractional anisotropy (FA) and relative anisotropy (RA) (P = .002) were significantly higher and the contralateral-ipsilateral hemispheric differences, ΔFA and ΔRA, (P < .001) were significantly lower in IDHonly patients compared with TERTonly, with a higher whole-brain normal-appearing white matter FA and RA (P = .01) and ΔFA and ΔRA (P = .002) compared to double positive patients. Whole-brain normal-appearing white matter ADC (P = .02), RD (P = .001), λ2 (P = .001), and λ3 (P = .001) were higher in IDH wild-type. Whole-brain normal-appearing white matter λ1 (AD) (P = .003), FA (P < .001), and RA (P = .003) were higher, but Δλ1 (P = .002), ΔFA, and ΔRA (P < .001) were lower in IDH mutant versus IDH wild-type. ΔFA (P = .01) and ΔRA (P = .02) were significantly higher in TERT mutant versus TERT wild-type. CONCLUSIONS: Axial and nonaxial diffusivities, anisotropy indices in the normal-appearing white matter and their interhemispheric differences demonstrated microstructural differences between IDH and TERT mutations, with the potential for classification methods.

Keywords: white matter; idh tert; appearing white; normal appearing

Journal Title: American Journal of Neuroradiology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.