LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dietary High-Dose Biotin Intake Activates Fat Oxidation and Hepatic Carnitine Palmitoyltransferase in Rat.

Photo by towfiqu999999 from unsplash

This study investigated the effects of dietary high-dose biotin intake on fat oxidation in rats using respiratory gas analysis, and evaluated fatty-acid oxidation-related enzyme activities and gene expressions in the… Click to show full abstract

This study investigated the effects of dietary high-dose biotin intake on fat oxidation in rats using respiratory gas analysis, and evaluated fatty-acid oxidation-related enzyme activities and gene expressions in the liver. Five-week-old male Sprague-Dawley rats were fed a control diet and three biotin-supplemented diets (additive biotin concentration: 0.05%, 0.10%, and 0.20% of diet) for 3 wk. In 2 wk, fat oxidation in the 0.20% biotin-supplemented diet group was higher than that in the 0.05% biotin-supplemented diet group; however, the energy expenditure and carbohydrate oxidation were unchanged between the dietary groups. At the end of 3 wk, body weight and epididymal white adipose tissue weight reduced in the 0.20% biotin diet group, and hepatic triglyceride levels tended to decrease. Additionally, increased plasma adiponectin concentration and hepatic mitochondrial carnitine palmitoyltransferase activity as well as decreased hepatic acetyl-CoA carboxylase 2 gene expression were observed in the 0.20% biotin-supplemented diet group compared with those in the control group. These results provide strong evidence that dietary high-dose biotin intake activated fat oxidation due to the increase in hepatic β-oxidation, which may contribute to the decrease in hepatic triglyceride concentration and white adipose tissue weight.

Keywords: oxidation; dietary high; dose biotin; biotin intake; fat oxidation; high dose

Journal Title: Journal of nutritional science and vitaminology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.