LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Informative Observation in Health Data: Association of Past Level and Trend with Time to Next Measurement.

Photo by bruno_nascimento from unsplash

In routine health data, risk factors and biomarkers are typically measured irregularly in time, with the frequency of their measurement depending on a range of factors - for example, sicker… Click to show full abstract

In routine health data, risk factors and biomarkers are typically measured irregularly in time, with the frequency of their measurement depending on a range of factors - for example, sicker patients are measured more often. This is termed informative observation. Failure to account for this in subsequent modelling can lead to bias. Here, we illustrate this issue using body mass index measurements taken on patients with type 2 diabetes in Salford, UK. We modelled the observation process (time to next measurement) as a recurrent event Cox model, and studied whether previous measurements in BMI, and trends in the BMI, were associated with changes in the frequency of measurement. Interestingly, we found that increasing BMI led to a lower propensity for future measurements. More broadly, this illustrates the need and opportunity to develop and apply models that account for, and exploit, informative observation.

Keywords: informative observation; observation; time; health data; measurement

Journal Title: Studies in health technology and informatics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.