LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation characterization and blood compatibility studies of silk fibroin/gelatin/curcumin injectable hydrogels.

Photo from wikipedia

BACKGROUND Hydrogel is a three-dimensional structure that has the potential to absorb and retain water within the mesh of its porous network structure. Currently hydrogels made from natural biopolymers are… Click to show full abstract

BACKGROUND Hydrogel is a three-dimensional structure that has the potential to absorb and retain water within the mesh of its porous network structure. Currently hydrogels made from natural biopolymers are preferred in the discipline of biomedical applications because of their blood compatibility, adhesion of platelets and protein binding, ease of administration and delivery of ingredients to the place of action. OBJECTIVE The aim of this work was to prepare a hydrogel from natural biopolymers and evaluate its blood compatibility, swelling nature, prolonged degradation and morphological features in order to further recommend its clinical use. METHODS To prepare hydrogels, different combinations of gelatin, dialyzed SF, curcumin and N, N methylene bisacrylamide (MBA) were evenly mixed on a magnetic stirrer. After an hour of the gelation process it was kept in a refrigerator at 4 °C. For the characterization and biocompatibility studies of hydrogel, the swelling test and biodegradation analysis, SEM, FTIR, in vitro coagulation tests, total serum albumin and cholesterol level analysis were applied. RESULTS Injectable hydrogels were successfully made with significantly correlated combinations of polymers. The analysis of physiochemical biocompatibility studies and morphological characterization were done effectively. CONCLUSION The results of the study indicate that hydrogels made from natural biopolymers are a potential source and suitable matrices with excellent biocompatible nature acting as a useful device in delivering drugs.

Keywords: blood compatibility; natural biopolymers; blood; characterization; injectable hydrogels

Journal Title: Bio-medical materials and engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.