LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spheroid formation of human keratinocyte: Balancing between cell-substrate and cell-cell interaction.

Photo from wikipedia

BACKGROUND The formation of spheroids is tightly regulated by intrinsic cell-cell and cell-substrate interactions. OBJECTIVE The chitosan (CS)-coating was applied to investigate the driven force directed the spheroid formation. METHODS… Click to show full abstract

BACKGROUND The formation of spheroids is tightly regulated by intrinsic cell-cell and cell-substrate interactions. OBJECTIVE The chitosan (CS)-coating was applied to investigate the driven force directed the spheroid formation. METHODS The effects of CS on cell functions were studied. Atomic force microscopy was employed to measure the cell- biomaterial interplay at single cell level. RESULTS HaCaT cells shifted from their flattened sheet to a compact 3D spheroidal morphology when increasing CS coating concentration. The proliferative capacity of HaCaT was preserved in the spheroid. The expression and activation of integrin β1 (ITGB1) were enhanced on CS modified surfaces, while the active to total ratio of ITGB1 was decreased. The adhesive force of a single HaCaT cell to the tissue culture plate (TCP) was 4.84±0.72 nN. It decreased on CS-coated surfaces as CS concentration increased, from 2.16±0.26 nN to 0.96±0.17 nN. The adhesive force between the single HaCaT cell to its neighbor cell increased as CS concentration increased, from 1.15±0.09 nN to 2.60±0.51 nN. CONCLUSIONS Conclusively, the decreased cell- substrate adhesion was the main driven force in the spheroid formation. This finding might serve as a design criterion for biomaterials facilitating the formation of epithelial spheroids.

Keywords: formation; cell substrate; cell cell; spheroid formation; cell

Journal Title: Clinical hemorheology and microcirculation
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.