LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcription factor GATA1 represses oxidized-low density lipoprotein-induced pyroptosis of human coronary artery endothelial cells.

Photo by edhoradic from unsplash

BACKGROUND Atherosclerosis (AS) is defined as a chronic inflammatory disorder underly the pathogenesis of cardiovascular diseases (CVDs). Endothelial pyroptosis is associated with AS-like diseases and other CVDs. OBJECTIVE This work… Click to show full abstract

BACKGROUND Atherosclerosis (AS) is defined as a chronic inflammatory disorder underly the pathogenesis of cardiovascular diseases (CVDs). Endothelial pyroptosis is associated with AS-like diseases and other CVDs. OBJECTIVE This work was designed to expound on the effect of GATA-binding protein 1 (GATA1) on pyroptosis of human coronary artery endothelial cells (HCAECs) in AS. METHODS HCAECs were treated with oxidized-low density lipoprotein (ox-LDL) to establish HCAEC injury models. Plasmids for overexpressing GATA1 or silencing retinoic acid-related orphan receptor α (RORα) were transfected into HCAECs. Thereafter, the mRNA levels of GATA1 and RORα in HCAECs were detected using real-time quantitative polymerase chain reaction. HCAEC viability was examined using the cell counting kit-8 method. The levels of pyroptosis-related proteins NOD-like receptor protein 3 (NLRP3), cleaved-Caspase-1, N-terminal of gasdermin D (GSDMD-N), and pyroptosis-related inflammatory cytokines interleukin (IL)-1β and IL-18 were determined using Western blot and enzyme-linked immunosorbent assays, respectively. The targeting relationship between GATA1 and RORα was verified using the chromatin-immunoprecipitation assay. Then, the rescue experiment was conducted to explore the effect of RORα on pyroptosis of ox-LDL-treated HCAECs. RESULTS In ox-LDL-treated HCAECs, GATA1 and RORα expressions were decreased, HCAEC viability was reduced, and the levels of NLRP3, cleaved-Caspase1, GSDMD-N, IL-1β, and IL-18 were elevated. GATA1 overexpression increased HCAEC viability and attenuated pyroptosis. GATA1 bound to the RORα promoter region to stimulate RORα transcription, and RORα suppression facilitated ox-LDL-induced pyroptosis of HCAECs. CONCLUSIONS GATA1 activated RORα transcription and therefore limited pyroptosis of ox-LDL-treated HCAECs.

Keywords: ror; transcription; pyroptosis; pyroptosis human; human coronary; gata1

Journal Title: Clinical hemorheology and microcirculation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.