LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction and analysis of College Students’ mental health based on BP neural network

Photo from wikipedia

College Students’ mental health is an important part of higher education, so the current research and prediction of College Students’ mental health are of great significance to better solve the… Click to show full abstract

College Students’ mental health is an important part of higher education, so the current research and prediction of College Students’ mental health are of great significance to better solve the problem of College Students’ mental health. Taking a local university as an example, the data from 2011 to 2019 are selected and analyzed. The normalized data processing method is used to assign weights to 11 kinds of factors that affect the health of college students. The training samples of a neural network are selected, and the structural characteristics of the neural network and the artificial neural network toolbox of MATLAB are used to establish the BP based model the mathematical model of the prediction system of College Students’ mental health based on neural network. The results show that the error between the predicted value and the measured value is only 0.88%. On this basis, this paper uses the model to predict the weight of the influencing factors of the mental health status of college students in a local university in 2020 and analyzes the causes of the prediction results, to provide the basis for the current mental health education of college students.

Keywords: college; college students; neural network; students mental; mental health

Journal Title: Journal of Intelligent and Fuzzy Systems
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.