In this study, the analysis based on boosting approach namely linear and tree method are explored in extreme gradient boosting (XGBoost) to classify blood brain barrier drugs using clinical phenotype.… Click to show full abstract
In this study, the analysis based on boosting approach namely linear and tree method are explored in extreme gradient boosting (XGBoost) to classify blood brain barrier drugs using clinical phenotype. The clinical phenotype features of BBB drugs are Public available SIDER dataset. The clinical features namely drug's side effect, drug's indication and the combination is fed to XGBoost. Results shows that the proposed approach is able to discriminate BBB drugs. The combination of XGBoost with tree boosting is found to be most accurate (F1=78.5%) in classifying BBB drugs. This method of tree boosting in XGBoost may be extended to access the drugs for precision medicine.
               
Click one of the above tabs to view related content.