LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessing Human Mobility by Constructing a Skeletal Database and Augmenting it Using a Generative Adversarial Network (GAN) Simulator

This paper presents a neural network simulator based on anonymized patient motions that measures, categorizes, and infers human gestures based on a library of anonymized patient motions. There is a… Click to show full abstract

This paper presents a neural network simulator based on anonymized patient motions that measures, categorizes, and infers human gestures based on a library of anonymized patient motions. There is a need for a sufficient training set for deep learning applications (DL). Our proposal is to extend a database that includes a limited number of videos of human physiotherapy activities with synthetic data. As a result of our posture generator, we are able to generate skeletal vectors that depict human movement. A human skeletal model is generated by using OpenPose (OP) from multiple-person videos and photographs. In every video frame, OP represents each human skeletal position as a vector in Euclidean space. The GAN is used to generate new samples and control the parameters of the motion. The joints in our skeletal model have been restructured to emphasize their linkages using depth-first search (DFS), a method for searching tree structures. Additionally, this work explores solutions to common problems associated with the acquisition of human gesture data, such as synchronizing activities and linking them to time and space. A new simulator is proposed that generates a sequence of virtual coordinated human movements based upon a script.

Keywords: network; simulator; database; human mobility; assessing human; mobility constructing

Journal Title: Studies in health technology and informatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.