LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Artifact-Assisted multi-level and multi-scale feature fusion attention network for low-dose CT denoising.

Photo by blakecheekk from unsplash

BACKGROUND AND OBJECTIVE Since low-dose computed tomography (LDCT) images typically have higher noise that may affect accuracy of disease diagnosis, the objective of this study is to develop and evaluate… Click to show full abstract

BACKGROUND AND OBJECTIVE Since low-dose computed tomography (LDCT) images typically have higher noise that may affect accuracy of disease diagnosis, the objective of this study is to develop and evaluate a new artifact-assisted feature fusion attention (AAFFA) network to extract and reduce image artifact and noise in LDCT images. METHODS In AAFFA network, a feature fusion attention block is constructed for local multi-scale artifact feature extraction and progressive fusion from coarse to fine. A multi-level fusion architecture based on skip connection and attention modules is also introduced for artifact feature extraction. Specifically, long-range skip connections are used to enhance and fuse artifact features with different depth levels. Then, the fused shallower features enter channel attention for better extraction of artifact features, and the fused deeper features are sent into pixel attention for focusing on the artifact pixel information. Last, an artifact channel is designed to provide rich artifact features and guide the extraction of noise and artifact features. The AAPM LDCT Challenge dataset is used to train and test the network. The performance is evaluated using both visual observation and quantitative metrics including peak signal-noise-ratio (PSNR), structural similarity index (SSIM) and visual information fidelity (VIF). RESULTS Using AAFFA network improves the averaged PSNR/SSIM/VIF values of AAPM LDCT images from 43.4961, 0.9595, 0.3926 to 48.2513, 0.9859, 0.4589, respectively. CONCLUSIONS The proposed AAFFA network enables to effectively reduce noise and artifacts while preserving object edges. Assessment of visual quality and quantitative index demonstrates the progressive improvement compared with other image denoising methods.

Keywords: attention; network; artifact; feature fusion

Journal Title: Journal of X-ray science and technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.