LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Projection domain processing for low-dose CT reconstruction based on subspace identification.

Photo by pimchu from unsplash

PURPOSE Low-dose computed tomography (LDCT) has promising potential for dose reduction in medical applications, while suffering from low image quality caused by noise. Therefore, it is in urgent need for… Click to show full abstract

PURPOSE Low-dose computed tomography (LDCT) has promising potential for dose reduction in medical applications, while suffering from low image quality caused by noise. Therefore, it is in urgent need for developing new algorithms to obtain high-quality images for LDCT. METHODS This study tries to exploit the sparse and low-rank properties of images and proposes a new algorithm based on subspace identification. The collection of transmission data is sparsely represented by singular value decomposition and the eigen-images are then denoised by block-matching frames. Then, the projection is regularized by the correlation information under the frame of prior image compressed sensing (PICCS). With the application of a typical analytical algorithm on the processed projection, the target images are obtained. Both numerical simulations and real data verifications are carried out to test the proposed algorithm. The numerical simulations data is obtained based on real clinical scanning three-dimensional data and the real data is obtained by scanning experimental head phantom. RESULTS In simulation experiment, using new algorithm boots the means of PSNR and SSIM by 1 dB and 0.05, respectively, compared with BM3D under the Gaussian noise with variance 0.04. Meanwhile, on the real data, the proposed algorithm exhibits superiority over compared algorithms in terms of noise suppression, detail preservation and computational overhead. The means of PSNR and SSIM are improved by 1.84 dB and 0.1, respectively, compared with BM3D under the Gaussian noise with variance 0.04. CONCLUSION This study demonstrates the feasibility and advantages of a new algorithm based on subspace identification for LDCT. It exploits the similarity among three-dimensional data to improve the image quality in a concise way and shows a promising potential on future clinical diagnosis.

Keywords: projection; subspace identification; based subspace; low dose

Journal Title: Journal of X-ray science and technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.