LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cross talk between redox signalling and metabolic activity of osteoblasts and fibroblasts in the presence of hydroxyapatite-based biomaterials influences bone regeneration

Photo from wikipedia

Regeneration of bone tissue defects that result from metabolic disorders, including periodontal diseases, can be supported by biomaterials based on hydroxyapatite. Despite of good biocompatibility of biomaterials they can cause… Click to show full abstract

Regeneration of bone tissue defects that result from metabolic disorders, including periodontal diseases, can be supported by biomaterials based on hydroxyapatite. Despite of good biocompatibility of biomaterials they can cause oxidative stress and inflammatory processes as a result of mechanical interaction with surrounding tissues. Because osteoblasts are responsible for bone regeneration process in which gingival fibroblasts may also participate, the aim of the work was to investigate the influence of hydroxyapatite-based biomaterials (allogeneic and xenogeneic) and biomaterials combined with enamel matrix derivative (Emdogain) on osteoblast and fibroblast redox balance in the context of osteoblast proliferation and differentiation. The results showed that examined substitutes were not cytotoxic in vitro, but affected redox balance of osteoblasts and fibroblasts (ROS level increase and GSH level decrease) which led to oxidative stress (MDA and protein carbonyl groups level increase) resulting in an increase of the Nrf2 and NFκB expression. The consequence of these changes was partial inhibition of proliferation and osteoblast differentiation. Emdogain alone and combined with biomaterials decreased ROS generation and increased GSH level in both osteoblasts and fibroblasts leading to reduction of transcription factors expression especially proinflammatory NFκB, which promoted osteoblast differentiation and mineralization process.

Keywords: hydroxyapatite based; osteoblasts fibroblasts; based biomaterials; bone regeneration; regeneration

Journal Title: Journal of Applied Biomedicine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.