LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Hybrid Statistical and Prioritised Unequal Error Protection Scheme for IEEE 802.11n LDPC Codes

Photo from wikipedia

The combination of powerful error correcting codes such as (LDPC) codes and Quadrature Amplitude Modulation (QAM) has been widely deployed in wireless communication standards such as the IEEE 802.11n and… Click to show full abstract

The combination of powerful error correcting codes such as (LDPC) codes and Quadrature Amplitude Modulation (QAM) has been widely deployed in wireless communication standards such as the IEEE 802.11n and DVB-T2. Recently, several Unequal Error Protection schemes which exploit non-uniform degree distribution of bit nodes in irregular LDPC codes have been proposed. In parallel, schemes that exploit the inherent UEP characteristics of the QAM constellation have also been developed. In this paper, a hybrid UEP scheme is proposed for LDPC codes with QAM. The scheme uses statistical distribution of source symbols to map the systematic bits of the LDPC encoded symbols to the QAM constellation. Essentially, systematic symbols having highest probabilities of occurrence are mapped onto the low power region of the QAM constellation and those with a low probability of occurrence are mapped onto the high power region. The decrease in overall transmission power allows for an increased spacing between the QAM constellation points. Additionally, the scheme uses the distribution of the bit node degree of the LDPC code-word to map the parity bits having the highest degree onto prioritised QAM constellation points. Simulations with the IEEE 802.11n LDPC codes revealed that the proposed scheme can provide gains of up to 0.91 dB in Eb/No compared with other UEP schemes for a range of Bit Error Rate (BER) values.

Keywords: ieee 802; qam constellation; 802 11n; scheme; ldpc; ldpc codes

Journal Title: International Journal of Electrical and Computer Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.