LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Adsorption Parameter on the Removal of Aspirin Using Tyre Waste Adsorbent

Photo from wikipedia

In recent years, pharmaceutical compound has been detected in small concentration in our surface and ground water. This detection raises a lot of concern as is it reported that pharmaceutical… Click to show full abstract

In recent years, pharmaceutical compound has been detected in small concentration in our surface and ground water. This detection raises a lot of concern as is it reported that pharmaceutical compound can bring adverse effect to the environment even at low concentration. Besides that, there is a growing fear that this compound will eventually end up in human drinking water, thus effecting human health. This prompt a lot of research on the removal method for this particular compound. Adsorption is seen as the most viable option because of its high efficiency, low cost and it is environmentally friendly. In this study, the adsorbent used is carbon black derived from tyre waste via pyrolysis at 800 oC. The carbon black was treated with 6 M of nitric acid (HNO3) at 90 °C for 0.5 h before being subjected to thermal treatment at 600 °C for 1 h. The response of the adsorption study is the removal of aspirin. There were five adsorption parameters that were varied in this study which are the contact time (until equilibrium), initial pH of aspirin solution (pH 3, pH 7, pH 11), temperature (30, 50, 70 °C), initial concentration (10-100 mg/L) and adsorbent dosage (0.1 g, 0.5 g, 1.0 g). The best removal capacity obtained was 40.40 mg/g of aspirin at pH 3, temperature of 30 °C, 100 mg/L initial concentration and 0.02 g adsorbent dosage.

Keywords: removal; adsorption; tyre waste; concentration; compound; removal aspirin

Journal Title: Chemical engineering transactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.