LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impacts of a reduction in seawater pH mimicking ocean acidification on the structure and diversity of mycoplankton communities

Photo from wikipedia

Increases in atmospheric carbon dioxide (CO2) change ocean chemistry, as dissolved CO2 leads to a reduction in the seawater pH. Many marine taxa have been shown to be affected by… Click to show full abstract

Increases in atmospheric carbon dioxide (CO2) change ocean chemistry, as dissolved CO2 leads to a reduction in the seawater pH. Many marine taxa have been shown to be affected by ocean acidification, while information on marine fungi is lacking. Here, we analyze the effect of pH on mycoplankton communities. The pH of microcosms was adjusted to a value mimicking the predicted ocean acidification in the near future. Fungal communities were analyzed using a double-marker gene approach, allowing a more detailed analysis of their response using 454 pyrosequencing. Mycoplankton communities in microcosms with in situ and adjusted water pH values differed significantly in terms of structure and diversity. The differences were mainly based on abundance shifts among the dominant taxa rather than the exclusion of fungal groups. A sensitivity to lower pH values was reported for several groups across the fungal kingdom and was not phylogenetically conserved. Some of the fungal species that dominated the communities of microcosms with a lower pH were known pathogenic fungi. With the increasing awareness of the significant role fungi play in marine systems, including performing a diverse range of symbiotic activities, our results highlight the importance of including fungi in further research projects studying and modeling biotic responses to the predicted ocean acidification.

Keywords: reduction seawater; acidification; ocean acidification; structure diversity; mycoplankton communities

Journal Title: Aquatic Microbial Ecology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.