LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impacts of dietary calcium, phytate, and phytase on inositol hexakisphosphate degradation and inositol phosphate release in different segments of digestive tract of broilers

Photo from wikipedia

&NA; A total of 720 straight‐run Heritage 56 M × fast feathering Cobb 500F broiler chickens was fed from 11 to 13 d of age to determine the impacts of… Click to show full abstract

&NA; A total of 720 straight‐run Heritage 56 M × fast feathering Cobb 500F broiler chickens was fed from 11 to 13 d of age to determine the impacts of dietary calcium (Ca), phytate phosphorus (PP), and phytase concentrations on inositol phosphate (IP3‐6) profile in different digestive tract (GI) segments. The experiment was a 2 × 2 × 3 randomized block design with 2 Ca (0.7 and 1.0%) and 2 PP (0.23 and 0.34%) concentrations and 3 doses of Buttiauxella sp. phytase (0, 500, and 1,000 FTU/kg). The experiment was replicated in time (block) with 3 replicates per treatment (Trt) of 10 birds per block. Concentrations of IP3‐6 in the crop, proventriculus (Prov) plus (+) gizzard (Giz), and distal ileum, as well as the ileal IP6 and P disappearance were determined at 13 d of age. The detrimental impact of Ca on IP6 and P disappearance was observed only in the ileum, where 11% reduction in both IP6 and P disappearance was seen when Ca increased from 0.7 to 1.0% (P < 0.05). Higher IP5 and IP6 concentrations were seen in both the crop and Prov+Giz at 0.34% PP as compared to birds fed to 0.23% PP diets, regardless of Ca or phytase (P < 0.05), whereas IP3 and IP4 concentrations were not affected by PP (P > 0.05). Inclusion of phytase, at both 500 and 1,000 FTU/kg, resulted in lower IP6 and the accumulation of lower IP ester (IP3‐5) concentrations in all GI segments (P < 0.05). Improved IP6 and P disappearance was seen as a result of phytase inclusion, despite the degree of improvement affected by PP (P < 0.05). On average, 5.5 and 6.7 times improvement in IP6 was observed with 500 and 1,000 FTU phytase/kg inclusion, respectively, resulting in 41 and 64% greater P digestibility, respectively. In conclusion, phytase can effectively degrade IP6 to lower esters and increase P utilization. However, the efficacy of phytase can be affected by diet Ca and PP concentrations.

Keywords: dietary calcium; inositol; phytase; inositol phosphate; impacts dietary; calcium phytate

Journal Title: Poultry Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.