The effect of essential total sulfur amino acids (TSAA) like methionine and cysteine on the cecal microbiome of broilers was investigated at 2 different time points (days 21 and 42)… Click to show full abstract
The effect of essential total sulfur amino acids (TSAA) like methionine and cysteine on the cecal microbiome of broilers was investigated at 2 different time points (days 21 and 42) of broiler rearing. A total of 360-day-old Cobb male broiler chicks were randomly distributed to 6 dietary treatments in a 2 × 3 factorial arrangement, with 2 levels of antibiotic growth promoters (AGP: 0 and 0.05%) and 3 levels of TSAA (DL-methionine) either for starter (0.7, 0.8, and 0.9%) or finisher chicks (0.52, 0.62, and 0.72%), labeled as diets 1 to 6. Cecal digesta from each replicate (n = 10) were sampled on days 21 and 42. DNA was extracted for the amplification of the V4 region of bacterial 16S rRNA genes and subjected to Illumina sequencing. Bioinformatic analyses were performed using QIIME, Mothur, and ad hoc tools and functional profiles of the inferred metagenome were analyzed using PICRUST. Statistical difference was determined by 2-way ANOVA and PERMANOVA. Clustering of cecal communities using PCoA showed clear separation of microbial communities based on age (P < 0.05) of birds and between low and medium/ high levels of TSAA (DL-methionine). At day 21, bacterial richness and diversity were higher than at day 42 where Clostridium cluster XI and Lactobacillus were found most abundant. No variability in taxonomic richness at the genus level was observed with AGP and DL-methionine supplementation. Interbird variation for richness was greater at day 42 compared to day 21. The mean fold difference of richness was greater (1.5 mean fold) with diets 1 and 6, suggesting interactive effects of AGP and TSAA (DL-methionine) in the diet. KEGG function profiles calculated by PICRUST suggest that the cecal microbiome increased glycolysis and energy generation correlated with increased dietary TSAA (DL-methionine) supplementation levels during the late broiler growth period (day 42). This study increases our knowledge of microbial dynamics and functions that are relevant to host nutrition and performance that may help us tailoring alternative strategies for raising poultry birds under antibiotic-free conditions.
               
Click one of the above tabs to view related content.