LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fully integrated wearable humidity sensor for respiration monitoring

Photo from wikipedia

Respiration monitoring is a promising alternative to medical diagnosis of several diseases. However, current techniques of respiration monitoring often require expensive and cumbersome devices which greatly limit their medical applications.… Click to show full abstract

Respiration monitoring is a promising alternative to medical diagnosis of several diseases. However, current techniques of respiration monitoring often require expensive and cumbersome devices which greatly limit their medical applications. Here, we present a fully integrated wearable device consisting of a flexible LCP-copper interdigital electrode, a sensing layer and a wireless electrochemical analysis system. The developed humidity sensor exhibits a high sensitivity, a good repeatability and a rapid response/recover time. The long-term stability is over 30 days at different relative humidity. By integrating the flexible humidity sensor with miniaturized electrochemical analysis system (0.8 cm × 1.8 cm), response current concerning respiration can be wirelessly transmitted to App-assisted smartphone in real time. Furthermore, the fabricated humidity sensor can realize skin moisture monitoring in a touch-less way. The large-scale production of miniaturized flexible sensor (4 mm × 6 mm) has significantly contributed to commercial deployment.

Keywords: humidity sensor; humidity; fully integrated; respiration monitoring; sensor

Journal Title: Frontiers in Bioengineering and Biotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.