LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combinatorial CRISPR Interference Library for Enhancing 2,3-BDO Production and Elucidating Key Genes in Cyanobacteria

Photo by austriannationallibrary from unsplash

Cyanobacteria can convert CO2 to chemicals such as 2,3-butanediol (2,3-BDO), rendering them promising for renewable production and carbon neutralization, but their applications are limited by low titers. To enhance cyanobacterial… Click to show full abstract

Cyanobacteria can convert CO2 to chemicals such as 2,3-butanediol (2,3-BDO), rendering them promising for renewable production and carbon neutralization, but their applications are limited by low titers. To enhance cyanobacterial 2,3-BDO production, we developed a combinatorial CRISPR interference (CRISPRi) library strategy. We integrated the 2,3-BDO pathway genes and a CRISPRi library into the cyanobacterium PCC7942 using the orthogonal CRISPR system to overexpress pathway genes and attenuate genes that inhibit 2,3-BDO formation. The combinatorial CRISPRi library strategy allowed us to inhibit fbp, pdh, ppc, and sps (which catalyzes the synthesis of fructose-6-phosphate, acetyl-coenzyme A, oxaloacetate, and sucrose, respectively) at different levels, thereby allowing for rapid screening of a strain that enhances 2,3-BDO production by almost 2-fold to 1583.8 mg/L. Coupled with a statistical model, we elucidated that differentially inhibiting all the four genes enhances 2,3-BDO synthesis to varying degrees. fbp and pdh suppression exerted more profound effects on 2,3-BDO production than ppc and sps suppression, and these four genes can be repressed simultaneously without mutual interference. The CRISPRi library approach paves a new avenue to combinatorial metabolic engineering of cyanobacteria.

Keywords: production; bdo production; combinatorial crispr; crispr interference

Journal Title: Frontiers in Bioengineering and Biotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.