LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DNA-directed coimmobilization of multiple enzymes on organic−inorganic hybrid DNA flowers

Photo by nci from unsplash

The artificial multienzyme systems developed by mimicking nature has attracted much interest. However, precisely controlled compositions and ratios of multienzymatic co-immobilization systems are still limited by the indistinguishable nature of… Click to show full abstract

The artificial multienzyme systems developed by mimicking nature has attracted much interest. However, precisely controlled compositions and ratios of multienzymatic co-immobilization systems are still limited by the indistinguishable nature of enzymes. Herein, a strategy for fabricating DNA-directed immobilization of horseradish peroxidase (HRP) and glucose oxidase (GOx) on hybrid DNA nanoflowers (GOx-HRP@hDFs) is presented. The preparation of micron-sized hybrid DNA flowers (hDFs) begins with the predetermined repeatable polymer-like DNA sequences which contained two strands. The hDFs structure is generated through one-pot rolling circle amplification (RCA) and self-assembly with magnesium pyrophosphate inorganic crystals. Based on the rigid-base pairing, GOx and HRP conjugated with sequences complementary to strands would be anchored to the predesigned locations, respectively. By adjusting the loading amount/ratio of enzymes properly, the maximal catalytic efficiency can be precisely regulated. The reaction activity of GOx-HRP@hDFs was 7.4 times higher than that of the free GOx-HRP under the optimal mole ratio (GOx/HRP 4:1). In addition, this multienzyme catalyst system exhibits excellent precision, specificity, reproducibility, and long-term storage stability when applied to real human blood samples. The preceding results validate that GOx-HRP@hDFs are promising candidates for personal diabetes detection.

Keywords: gox hrp; dna; dna flowers; hybrid dna; dna directed

Journal Title: Frontiers in Bioengineering and Biotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.