Regenerating islet-derived 4 (REG4) gene was discovered by high-throughput sequencing of ulcerative colitis cDNA libraries. REG4 is involved in infection and inflammation by enhancing macrophage polarization to M2, via activation… Click to show full abstract
Regenerating islet-derived 4 (REG4) gene was discovered by high-throughput sequencing of ulcerative colitis cDNA libraries. REG4 is involved in infection and inflammation by enhancing macrophage polarization to M2, via activation of epidermal growth factor receptor (EGFR)/Akt/cAMP-responsive element binding and the killing inflammatory Escherichia coli, and closely linked to tumorigenesis. Its expression was transcriptionally activated by caudal type homeobox 2, GATA binding protein 6, GLI family zinc finger 1, SRY-box transcription factor 9, CD44 intracytoplasmic domain, activating transcription factor 2, and specificity protein 1, and translationally activated by miR-24. REG4 can interact with transmembrane CD44, G protein-coupled receptor 37, mannan and heparin on cancer cells. Its overexpression was observed in gastric, colorectal, pancreatic, gallbladder, ovarian and urothelial cancers, and is closely linked to their aggressive behaviors and a poor prognosis. Additionally, REG4 expression and recombinant REG4 aggravated such cellular phenotypes as tumorigenesis, proliferation, anti-apoptosis, chemoradioresistance, migration, invasion, peritoneal dissemination, tumor growth, and cancer stemness via EGFR/Akt/activator protein-1 and Akt/glycogen synthase kinase three β/β-catenin/transcription factor 4 pathways. Sorted REG4-positive deep crypt secretory cells promote organoid formation of single Lgr5 (+) colon stem cells by Notch inhibition and Wnt activation. Histologically, REG4 protein is specifically expressed in neuroendocrine tumors and signet ring cell carcinomas of the gastrointestinal tract, pancreas, ovary, and lung. It might support the histogenesis of gastric intestinal–metaplasia–globoid dysplasia–signet ring cell carcinoma. In this review, we summarized the structure, biological functions, and effects of REG4 on inflammation and cancer. We conclude that REG4 may be employed as a biomarker of tumorigenesis, subsequent progression and poor prognosis of cancer, and may be a useful target for gene therapy.
               
Click one of the above tabs to view related content.