LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

miR-30d-5p: A Non-Coding RNA With Potential Diagnostic, Prognostic and Therapeutic Applications

Photo from wikipedia

Cancer is a great challenge facing global public health. Scholars have made plentiful efforts in the research of cancer therapy, but the results are still not satisfactory. In relevant literature,… Click to show full abstract

Cancer is a great challenge facing global public health. Scholars have made plentiful efforts in the research of cancer therapy, but the results are still not satisfactory. In relevant literature, the role of miRNA in cancer has been widely concerned. MicroRNAs (miRNAs) are a non-coding, endogenous, single-stranded RNAs that regulate a variety of biological functions. The abnormal level of miR-30d-5p, a type of miRNAs, has been associated with various human tumor types, including lung cancer, colorectal cancer, esophageal cancer, prostate cancer, liver cancer, cervical cancer, breast cancer and other types of human tumors. This reflects the vital function of miR-30d-5p in tumor prognosis. miR-30d-5p can be identified either as an inhibitor hindering the development of, or a promoter accelerating the occurrence of tumors. In addition, the role of miR-30d-5p in cell proliferation, motility, apoptosis, autophagy, tumorigenesis, and chemoresistance are also noteworthy. The multiple roles of miR-30d-5p in human cancer suggest that it has broad feasibility as a biomarker and therapeutic target. This review describes the connection between miR-30d-5p and the clinical indications of tumors, and summarizes the mechanisms by which miR-30d-5p mediates cancer progression.

Keywords: cancer; coding rna; mir 30d; rna potential; non coding; 30d non

Journal Title: Frontiers in Cell and Developmental Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.