LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Key Mechanistic Features in Palladium-Catalyzed Methylcyclopropanation of Norbornenes With Vinyl Bromides: Insights From DFT Calculations

Photo by vlisidis from unsplash

DFT calculations were performed to elucidate mechanistic details of an unusual palladium-catalyzed methylcyclopropanation from [2 + 1] cycloadditions of (Z)-2-bromovinylbenzene and endo-N-(p-tolyl)-norbornenesuccinimide. The reaction proceeds via oxidative addition (OA), intermolecular… Click to show full abstract

DFT calculations were performed to elucidate mechanistic details of an unusual palladium-catalyzed methylcyclopropanation from [2 + 1] cycloadditions of (Z)-2-bromovinylbenzene and endo-N-(p-tolyl)-norbornenesuccinimide. The reaction proceeds via oxidative addition (OA), intermolecular alkene insertion, deprotonation/protonation, intramolecular alkene insertion, β-H elimination and reductive elimination (RE). Protonation is the rate-limiting step and requires an overall barrier of 28.5 kcal/mol. The sources of two protons for protonation and exchange have also been clarified and the calculations agree with experimental observations.

Keywords: key mechanistic; catalyzed methylcyclopropanation; dft calculations; palladium catalyzed; mechanistic features

Journal Title: Frontiers in Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.