LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

First Total Synthesis of (β-5)-(β-O-4) Dihydroxytrimer and Dihydrotrimer of Coniferyl Alcohol (G): Advanced Lignin Model Compounds

Photo by thinkmagically from unsplash

To investigate lignin degradation, scientists commonly use model compounds. Unfortunately, these models are most of the time simple β-O-4 dimers and do not sufficiently mimic the wide complexity of lignin… Click to show full abstract

To investigate lignin degradation, scientists commonly use model compounds. Unfortunately, these models are most of the time simple β-O-4 dimers and do not sufficiently mimic the wide complexity of lignin structure (i.e., aliphatic side chains and robust C-C bonds). Herein, we present a methodology to access advanced lignin models through the first synthesis of two trimers of monolignol G—possessing side-chains and both robust β-5 bond and labile β-O-4 bond—via a chemo-enzymatic pathway. Key steps were (1) the C-C coupling via laccase-mediated oxidation, (2) the C-O coupling via a simple SN2 between a phenolate and a bromoketoester, and (3) a modified Upjohn dihydroxylation or a palladium-catalyzed hydrogenation. (β-5)-(β-O-4) dihydroxytrimer and dihydrotrimer of coniferyl alcohol (G) were obtained in good global yield, 9 and 20%, respectively, over nine steps starting from ferulic acid.

Keywords: coniferyl alcohol; model compounds; dihydrotrimer coniferyl; dihydroxytrimer dihydrotrimer; advanced lignin

Journal Title: Frontiers in Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.