LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New Role for Photoexcited Na2 Eosin Y via the Direct Hydrogen Atom Transfer Process in Photochemical Visible-Light-Induced Synthesis of 2-Amino-4H-Chromene Scaffolds Under Air Atmosphere

Photo by trnavskauni from unsplash

The Knoevenagel–Michael cyclocondensation of malononitrile, aryl aldehydes, and resorcinol was used as a multicomponent green tandem strategy for the metal-free synthesis of 2-amino-4H-chromene scaffolds. Through a visible-light-induced process, the photo-excited… Click to show full abstract

The Knoevenagel–Michael cyclocondensation of malononitrile, aryl aldehydes, and resorcinol was used as a multicomponent green tandem strategy for the metal-free synthesis of 2-amino-4H-chromene scaffolds. Through a visible-light-induced process, the photo-excited state functions derived from Na2 eosin Y were used as direct hydrogen atom transfer catalysts in aqueous ethanol at ambient temperature. The purpose of this study was to examine the further use of an organic dye that does not contain metal and is inexpensive and commercially available. Na2 eosin Y is synthesized by photochemical means using the least amount of catalyst, which results in excellent yields, energy efficiency, and environmental friendliness, high atom economy, time-saving features, and ease of operation. As a result, some properties of green and sustainable chemistry are met. This kind of cyclization can be performed on a gram scale, indicating the potential utility of this reaction in industry.

Keywords: na2 eosin; chromene scaffolds; chemistry; amino chromene; eosin; synthesis amino

Journal Title: Frontiers in Chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.