LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemical doping of unsubstituted perylene diimide to create radical anions with enhanced stability and tunable photothermal conversion efficiency

Photo from wikipedia

N-doping of perylene diimides (PDIs) to create stable radical anions is significant for harvesting photothermal energy due to their intensive absorption in the near-infrared (NIR) region and non-fluorescence. In this… Click to show full abstract

N-doping of perylene diimides (PDIs) to create stable radical anions is significant for harvesting photothermal energy due to their intensive absorption in the near-infrared (NIR) region and non-fluorescence. In this work, a facile and straightforward method has been developed to control the doping of perylene diimide to create radical anions using organic polymer polyethyleneimine (PEI) as a dopant. It was demonstrated that PEI is an effective polymer-reducing agent for the n-doping of PDI toward the controllable generation of radical anions. In addition to the doping process, PEI could suppress the self-assembly aggregation and improve the stability of PDI radical anions. Tunable NIR photothermal conversion efficiency (maximum 47.9%) was also obtained from the radical-anion-rich PDI-PEI composites. This research provides a new strategy to tune the doping level of unsubstituted semiconductor molecules for varying yields of radical anions, suppressing aggregation, improving stability, and obtaining the highest radical anion-based performance.

Keywords: radical anions; create radical; diimide create; perylene diimide; stability; photothermal conversion

Journal Title: Frontiers in Chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.