LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Co-assembly of graphene/polyoxometalate films for highly electrocatalytic and sensing hydroperoxide

Photo by gabriel_17 from unsplash

Graphene oxide (GO) films mixed with polyethylenimine (PEI) were prepared by a layer-by-layer assembly (LBL) method, in which the GO component is then converted to reduced GO (rGO) in situ… Click to show full abstract

Graphene oxide (GO) films mixed with polyethylenimine (PEI) were prepared by a layer-by-layer assembly (LBL) method, in which the GO component is then converted to reduced GO (rGO) in situ through an electron transfer interaction with a polyoxometalate (POM) that is assembled on the outer surface. With this, devices were manufactured by spreading composite films of (PEI/rGO)n-POM with different numbers of PEI/rGO layers on ITO substrates. Cyclic voltammetry (CV) reveals that the catalytic activity for H2O2 of (PEI/rGO)n-POM films was significantly higher than that of similar films of (PEI/GO)n/PEI/POM manufactured LBL with the same number of layers, although the catalyst POM content of (PEI/rGO)n-POM was only half that of (PEI/GO)n/PEI/POM. The catalytic activity of (PEI/rGO)n-POM films first increases and then decreases as the number of PEI/rGO layers increases. The result shows that (PEI/rGO)3-POM films with three PEI/rGO layers exhibit the highest efficiency. Amperometric measurements of the (PEI/rGO)3-POM films showed improved current response, high sensitivity, wide linear range, low detection limit, and fast response for H2O2 detection. The enhanced catalytic property of (PEI/rGO)n-POM films is attributed to the electron transfer interaction and electrostatic interaction between POM and rGO.

Keywords: rgo; pei rgo; rgo pom; pom films

Journal Title: Frontiers in Chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.