Background The second human pegivirus (HPgV-2) and hepatitis C virus (HCV) belong to the Flaviviridae family and share some common genome features. However, the two viruses exhibit significantly different genetic… Click to show full abstract
Background The second human pegivirus (HPgV-2) and hepatitis C virus (HCV) belong to the Flaviviridae family and share some common genome features. However, the two viruses exhibit significantly different genetic diversity. The comparison of intrahost dynamics of HPgV-2 and HCV that mainly reflect virus-host interactions is needed to elucidate their intrahost difference of genetic diversity and the possible mechanisms. Methods Intrahost single nucleotide variations (iSNVs) were identified by means of next-generation sequencing from both cross-sectional and longitudinal samples from HPgV-2- and HCV-coinfected patients. The levels of human cytokines were quantified in the patient before and after HCV elimination by the treatment of direct-acting antivirals (DAA). Results Unlike HCV, the viral sequences of HPgV-2 are highly conserved among HPgV-2-infected patients. However, iSNV analysis confirmed the intrahost variation or quasispecies of HPgV-2. Almost all iSNVs of HPgV-2 did not accumulate or transmit within host over time, which may explain the highly conserved HPgV-2 consensus sequence. Intrahost variation of HPgV-2 mainly causes nucleotide transition in particular at the 3rd codon position and synonymous substitutions, indicating purifying or negative selection posed by host immune system. Cytokine data further indicate that HPgV-2 infection alone may not efficiently stimulate innate immune responses since proinflammatory cytokine expression dramatically decreased with elimination of HCV. Conclusion This study provided new insights into the intrahost genomic variations and evolutionary dynamics of HPgV-2 as well as the impact of host immune selection and virus polymerase on virus evolution. The different genetic diversity of HPgV-2 and HCV makes HPgV-2 a potential new model to investigate RNA virus diversity and the mechanism of viral polymerase in modulating virus replication.
               
Click one of the above tabs to view related content.