Quantifying the population stratification in genotype samples has become a standard procedure for data manipulation before conducting genome wide association studies, as well as for tracing patterns of migration in… Click to show full abstract
Quantifying the population stratification in genotype samples has become a standard procedure for data manipulation before conducting genome wide association studies, as well as for tracing patterns of migration in humans and animals, and for inference about extinct founder populations. The most widely used approach capable of providing biologically interpretable results is a likelihood formulation which allows for estimation of founder genome proportions and founder allele frequency conditional on the observed genotypes. However, if founder allele frequencies are known and samples are dominated by admixed genotypes this approach may lead to biased inference. In addition, processing time increases drastically with the number of genetic markers. This article describes a simplified approach for obtaining biologically meaningful measures of population stratification at the genotype level conditional on known founder allele frequencies. It was tested on cattle and human data sets with 4,022 and 150,000 genetic markers, respectively, and proved to be very accurate in situations where founder poplations were correctly specified, or under-, over-, and miss-specified. Moreover, processing time was only marginally affected by an increase in the number of markers.
               
Click one of the above tabs to view related content.