LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcriptome Analysis of the Liver and Muscle Tissues of Dorper and Small-Tailed Han Sheep

Photo from wikipedia

It is well known that Dorper (DP) is a full-bodied, fast-growing and high dressing percentage breed, while the production performance of Small-tailed Han sheep (STH) is not so excellent, in… Click to show full abstract

It is well known that Dorper (DP) is a full-bodied, fast-growing and high dressing percentage breed, while the production performance of Small-tailed Han sheep (STH) is not so excellent, in contrast to DP. Therefore, in this study, a comparative transcriptomic analysis of liver and muscle tissues from DP and STH breeds was carried out to find differentially expressed genes (DEGs) that affect their growth and meat quality traits. The results showed that the total number of DEGs was 2,188 in the two tissues. There were 950, 160 up-regulated and 1,007, 71 down-regulated genes in the liver and muscle, respectively. Several DEGs such as TGFB1, TGFB3, FABP3, LPL may be associated with growth and development in DP. Also, several GO terms were found to be associated with muscle growth and development, such as developmental growth (GO:0048589), and myofibril (GO:0030016). Further validation of eight genes (6 up-regulated, and 2 down-regulated) was performed using quantitative RT-PCR. These findings will provide valuable information for studying growth and development as well as meat quality traits in sheep.

Keywords: liver muscle; small tailed; growth; tailed han; muscle; han sheep

Journal Title: Frontiers in Genetics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.