LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Frequent somatic mosaicism in T lymphocyte subsets in individuals with and without multiple sclerosis

Photo by niaid from unsplash

Background Somatic variants are variations in an individual’s genome acquired after the zygotic stadium and result from mitotic errors or not (fully) repaired DNA damage. Objectives To investigate whether somatic… Click to show full abstract

Background Somatic variants are variations in an individual’s genome acquired after the zygotic stadium and result from mitotic errors or not (fully) repaired DNA damage. Objectives To investigate whether somatic mosaicism in T lymphocyte subsets is enriched early in multiple sclerosis (MS). Methods We identified somatic variants with variant allele fractions ≥1% across the whole exome in CD4+ and CD8+ T lymphocytes of 21 treatment-naive MS patients with <5 years of disease duration and 16 partially age-matched healthy controls. We investigated the known somatic STAT3 variant p.Y640F in peripheral blood in a larger cohort of 446 MS patients and 259 controls. Results All subjects carried 1-142 variants in CD4+ or CD8+ T lymphocytes. Variants were more common, more abundant, and increased with age in CD8+ T lymphocytes. Somatic variants were common in the genes DNMT3A and especially STAT3. Overall, the presence or abundance of somatic variants, including the STAT3 p.Y640F variant, did not differ between MS patients and controls. Conclusions Somatic variation in T lymphocyte subsets is widespread in both control individuals and MS patients. Somatic mosaicism in T lymphocyte subsets is not enriched in early MS and thus unlikely to contribute to MS risk, but future research needs to address whether a subset of variants influences disease susceptibility.

Keywords: somatic variants; lymphocyte subsets; mosaicism lymphocyte; somatic mosaicism; multiple sclerosis

Journal Title: Frontiers in Immunology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.