MicroRNAs (miRNAs) are crucial post-transcriptional regulators of gene expression in ubiquitous biological processes, including immune-related pathways. This review focuses on the miR-183/96/182 cluster (miR-183C), which contains three miRNAs, miR-183, -96,… Click to show full abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators of gene expression in ubiquitous biological processes, including immune-related pathways. This review focuses on the miR-183/96/182 cluster (miR-183C), which contains three miRNAs, miR-183, -96, and -182, having almost identical seed sequences with minor differences. The similarity among seed sequences allows these three miRNAs to act cooperatively. In addition, their minor differences permit them to target distinct genes and regulate unique pathways. The expression of miR-183C was initially identified in sensory organs. Subsequently, abnormal expression of miR-183C miRNAs in various cancers and autoimmune diseases has been reported, implying their potential role in human diseases. The regulatory effects of miR-183C miRNAs on the differentiation and function of both innate and adaptive immune cells have now been documented. In this review, we have discussed the complex role of miR-183C in the immune cells in both normal and autoimmune backgrounds. We highlighted the dysregulation of miR-183C miRNAs in several autoimmune diseases, including systemic lupus erythematosus (SLE), multiple sclerosis (MS), and ocular autoimmune disorders, and discussed the potential for utilizing miR-183C as biomarkers and therapeutic targets of specific autoimmune diseases.
               
Click one of the above tabs to view related content.