LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diagnostic value of artificial intelligence-assisted endoscopy for chronic atrophic gastritis: a systematic review and meta-analysis

Photo from wikipedia

Background and aims The diagnosis of chronic atrophic gastritis (CAG) under normal white-light endoscopy depends on the endoscopist's experience and is not ideal. Artificial intelligence (AI) is increasingly used to… Click to show full abstract

Background and aims The diagnosis of chronic atrophic gastritis (CAG) under normal white-light endoscopy depends on the endoscopist's experience and is not ideal. Artificial intelligence (AI) is increasingly used to diagnose diseases with good results. This review aimed to evaluate the accuracy of AI-assisted diagnosis of CAG through a meta-analysis. Methods We conducted a comprehensive literature search of four databases: PubMed, Embase, Web of Science, and the Cochrane Library. Studies published by November 21, 2022, on AI diagnosis CAG with endoscopic images or videos were included. We assessed the diagnostic performance of AI using meta-analysis, explored the sources of heterogeneity through subgroup analysis and meta-regression, and compared the accuracy of AI and endoscopists in diagnosing CAG. Results Eight studies that included a total of 25,216 patients of interest, 84,678 image training set images, and 10,937 test set images/videos were included. The results of the meta-analysis showed that the sensitivity of AI in identifying CAG was 94% (95% confidence interval [CI]: 0.88–0.97, I2 = 96.2%), the specificity was 96% (95% CI: 0.88–0.98, I2 = 98.04%), and the area under the summary receiver operating characteristic curve was 0.98 (95% CI: 0.96–0.99). The accuracy of AI in diagnosing CAG was significantly higher than that of endoscopists. Conclusions AI-assisted diagnosis of CAG in endoscopy has high accuracy and clinical diagnostic value. Systematic review registration http://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42023391853.

Keywords: meta analysis; chronic atrophic; artificial intelligence; analysis; atrophic gastritis

Journal Title: Frontiers in Medicine
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.