The name “Campylobacter” comes from ancient Greek meaning “curved rod” which describes the shape of this microorganism. Campylobacter was firstly isolated as a Vibrio species from epizootic ovine abortion in… Click to show full abstract
The name “Campylobacter” comes from ancient Greek meaning “curved rod” which describes the shape of this microorganism. Campylobacter was firstly isolated as a Vibrio species from epizootic ovine abortion in 1906 by McFadyean and Stockman (1913), and renamed in 1973 as the neotype strain Campylobacter after showing significant biological differences with Vibrio species (Véron and Chatelain, 1973). Rather than a curved rod, the shape looks more like to a spiral and can develop in to filamentous or coccoid forms under stressful conditions (Tangwatcharin et al., 2006; Ghaffar et al., 2015; Rodrigues et al., 2016). Nowadays, Campylobacter spp. are classified among the ε-proteobacteria in the family of Campylobacteriaceae (Vandamme et al., 1991). Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries, having surpassed Salmonella several years ago, and represents a significant economic burden (EFSA and ECDC, 2016). Although new species of Campylobacter have been recently discovered, human cases of campylobacterosis are dominated by two main species, Campylobacter jejuni and, to a lesser extent, Campylobacter coli. Quantitative epidemiology reports reveal high rates of contamination for broiler chickens and carcasses by Campylobacter (Hue et al., 2010; Lawes et al., 2012; Powell et al., 2012). The presence of Campylobacter was also detected in other farm animals or foodstuffs due to cross contamination (EFSA and ECDC, 2016). Campylobacter in poultry remains a problem with no effective control measures available that can be recommended for microbial food/farm safety guidelines to mitigate the risk of flock colonization. Campylobacter also remains a puzzle as to how an obligate microaerobic bacterium can survive from farm to retail outlets. The underlying molecular mechanisms of persistence, survival and pathogenesis appear to represent a combination peculiar to this pathogen, which are not shared with other foodborne bacterial pathogens such as Listeria monocytogenes, Salmonella enterica, Escherichia coli, and Staphylococcus aureus. This topic includes 18 published articles describing original studies of C. jejuni and C. coli that deal with (1) epidemiology and animal carriage, (2) host interaction, (3) control strategies, (4) metabolism and regulation specificities of these two pathogen species, (5) methodology to improve cultural technique and (6) chicken gut microbiota challenged with Campylobacter.
               
Click one of the above tabs to view related content.