LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Estradiol and Progesterone-Induced Intracellular Calcium Fluxes on Toxoplasma gondii Gliding, Microneme Secretion, and Egress

Photo from wikipedia

Research has shown that estrogen is present and plays a critical role in vertebrate reproduction and metabolism, but the influence of steroids on Toxoplasma gondii has received less attention. Our… Click to show full abstract

Research has shown that estrogen is present and plays a critical role in vertebrate reproduction and metabolism, but the influence of steroids on Toxoplasma gondii has received less attention. Our data showed that estradiol and progesterone induced parasitic cytosolic Ca2+ fluxes. This process required estrogen to enter the cytoplasm of T. gondii, and cGMP-dependent protein kinase G (PKG) and phosphoinositide-phospholipase C (PI-PLC) emerged as important factors controlling parasitic intracellular (IC) Ca2+ signals. Cytosolic Ca2+, which is regulated by estradiol, was mostly mobilized from acidic organelles. Moreover, cytosolic Ca2+ slightly increased MIC2 protein secretion and promoted the gliding motility and egress of parasites, thus enhancing the pathogenicity of T. gondii, as shown in our previous research. We subsequently determined that the main source of Ca2+ regulated by progesterone was a neutral store. In contrast to the findings of estradiol, progesterone reduced MIC2 protein secretion and inhibited the gliding motility of parasites, which may decrease their pathogenicity. Additionally, unlike in mammals, estradiol and progesterone had no effect on nitric oxide (NO) or reactive oxygen species (ROS) production in T. gondii.

Keywords: secretion; estradiol progesterone; progesterone induced; ca2; toxoplasma gondii; progesterone

Journal Title: Frontiers in Microbiology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.