Arsenate [As(V)] is a toxic metalloid and has been observed at high concentrations in groundwater globally. In this study, a bioelectrochemical system (BES) was used to efficiently remove As(V) from… Click to show full abstract
Arsenate [As(V)] is a toxic metalloid and has been observed at high concentrations in groundwater globally. In this study, a bioelectrochemical system (BES) was used to efficiently remove As(V) from groundwater, and the mechanisms involved were systematically investigated. Our results showed that As(V) can be efficiently removed in the BES cathode chamber. When a constant cell current of 30 mA (Icell, volume current density = 66.7 A/m3) was applied, 90 ± 3% of total As was removed at neutral pH (7.20–7.50). However, when Icell was absent, the total As in the effluent, mainly As(V), had increased approximately 2–3 times of the As(V) in influent. In the abiotic control reactor, under the same condition, no significant total As or As(V) removal was observed. These results suggest that As(V) removal was mainly ascribed to microbial electrosorption of As(V) in sludge. Moreover, part of As(V) was bioelectrochemically reduced to As(III), and sulfate was also reduced to sulfides [S(–II)] in sludge. The XANES results revealed that the produced As(III) reacted with S(–II) to form As2S3, and the residual As(III) was microbially electroadsorbed in sludge. This BES-based technology requires no organic or chemical additive and has a high As(V) removal efficiency, making it an environment-friendly technique for the remediation of As-contaminated groundwater.
               
Click one of the above tabs to view related content.