LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dispersal limitation dominates the community assembly of abundant and rare fungi in dryland montane forests

Photo from wikipedia

The assembly mechanisms and drivers of abundant and rare fungi in dryland montane forest soils remain underexplored. Therefore, in this study, we compared the distribution patterns of abundant and rare… Click to show full abstract

The assembly mechanisms and drivers of abundant and rare fungi in dryland montane forest soils remain underexplored. Therefore, in this study, we compared the distribution patterns of abundant and rare fungi and explored the factors determining their assembly processes in a dryland montane forest in China. Stronger distance-decay relationships (DDRs) were found in abundant sub-communities than in rare sub-communities. In addition, abundant fungi exhibited greater presence and wider habitat niche breadth than rare fungi. Both the null model and variation partitioning analysis indicated that dispersal limitation and environmental selection work together to govern both abundant and rare fungal assembly, while dispersal limitation plays a dominant role. Meanwhile, the relative influence of dispersal limitation and environmental selection varied between abundant and rare sub-communities, where dispersal limitation showed greater dominance in abundant fungal assembly. Mantel tests demonstrated that soil pH and phosphorus played critical roles in mediating abundant and rare fungi assembly processes, respectively. Our findings highlight that the distinct biogeographic patterns of abundant and rare fungi are driven by different assembly mechanisms, and the assembly processes of abundant and rare fungi are determined by diverse ecological drivers in dryland montane forest soils.

Keywords: rare fungi; dispersal limitation; abundant rare; dryland montane

Journal Title: Frontiers in Microbiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.