LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An improved automated diatom detection method based on YOLOv5 framework and its preliminary study for taxonomy recognition in the forensic diatom test

Photo by drew_hays from unsplash

The diatom test is a forensic technique that can provide supportive evidence in the diagnosis of drowning but requires the laborious observation and counting of diatoms using a microscopy with… Click to show full abstract

The diatom test is a forensic technique that can provide supportive evidence in the diagnosis of drowning but requires the laborious observation and counting of diatoms using a microscopy with too much effort, and therefore it is promising to introduce artificial intelligence (AI) to make the test process automatic. In this article, we propose an artificial intelligence solution based on the YOLOv5 framework for the automatic detection and recognition of the diatom genera. To evaluate the performance of this AI solution in different scenarios, we collected five lab-grown diatom genera and samples of some organic tissues from drowning cases to investigate the potential upper/lower limits of the capability in detecting the diatoms and recognizing their genera. Based on the study of the article, a recall score of 0.95 together with the corresponding precision score of 0.9 were achieved on the samples of the five lab-grown diatom genera via cross-validation, and the accuracy of the evaluation in the cases of kidney and liver is above 0.85 based on the precision and recall scores, which demonstrate the effectiveness of the AI solution to be used in drowning forensic routine.

Keywords: based yolov5; diatom test; test; detection; diatom; yolov5 framework

Journal Title: Frontiers in Microbiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.